長野県諏訪清陵高等学校 平成14~27年度SSH講座(SSHコース)課題研究テーマー覧

	年度番号	長野宗		度番号	
1		C言語プログラミング	96		葉の構造と糖度
2		ドミノの運動	97		オーロラ電波の観測と解析
3		蛍光物質の合成	98	2018	雪の結晶
4 5		細胞融合への道	99	2019	雪層の成分分析
5	1505	微分について	100		オーロラ動画撮影
6 7		自動文章作成プログラム 低気圧と雲の関係	101 102	2021	フェアバンクスと諏訪のトウヒ属の浸透圧比較について 日本とアラスカでの放射線測定
η /		図式圧と芸の関係 ミジンコを用いた薬物影響の研究	102	2022	気温の逆転現象
8		太陽電池	104	2024	緯度による重力加速度の違い
10	1510	自家製線香花火	105	2025	オーロラと地磁気
11	1601	ブラックジャックで勝とう	106	2026	新芽の耐寒戦略-クラウン組織に着目して
12		光センサーとその利用	107	2027	諏訪とフェアバンクスの磁場の違い
13		脳の活性化と音	108	2101	膜楽器の音程の変化
14		人工宝石の製作			数学パズル
15 16		プラナリアの再生 新種の植物を作ろう	110 111	2103 2104	魔方陣の特定 クマムシ分布調査
17		筋疲労について		2105	花の色
18		大陸移動の不思議		2106	紫外線の反射
19	1701	音が植物に及ぼす影響	114	2107	地形による気温推移の違い
20	1702	魔方陣の作成方とその総数	115	2108	オーロラの出現位置と形状の時間変化
21		金属イオンの置換によるミョウバンの着色		2109	オーロラのスペクトル
22	1704	響棒の位置によるギター音色の変化			オーロラからの電波
23 24	1705 1706	清陵高校の最低最高気温の観測および雲の発生実験 電磁式地震計製作および観測による諏訪盆地の地震動の解明		2111 2112	地球磁場の変動 雪
25		果実から取り出した酵母の培養と特性			雪の中の塵
26		銅の合金の製作	121		水の硬度による味への影響
27	1801	アラスカの雲層	122	2115	高野豆腐のスポンジ構造の出来方と気象条件の関係
28	1802	放射線観測レポート	123	2116	植物の糖度測定
29		アラスカと日本から見える星座の違い	124		植物のクラウン組織
30		つららの有無と道路の雪質分類	125		周囲の環境による血圧の変化
31		雪の結晶(アラスカと日本の、雪の結晶の比較) オーロラのスペクトル分析	126 127	2119 2120	地磁気の変化による人体への影響 扇風機からの反射音の変化
33		オーロラのスペットルガイ 日本(諏訪)とアラスカ(フェアバンクス)の植物の違いについて	128	2201	対象域が500反列目の変化 共振による物体破壊
34	1808	アラスカの雪の成分考察		2202	色素増感型太陽電池の研究
35	1809	ダイヤモンドダストの結晶の成長段階	130	2203	人エコランダムの生成
36	1810	日本とアラスカのシャボン玉の大きさの比較	131	2204	オオカナダモの紅葉
37		毛髄とストレスの関係	132	2205	美味しい高野豆腐を目指して(3)
38		霧ヶ峰とアラスカの植物の比較	133	2206	アラスカオーロラ観測(6)~立体観測による高度測定~
39 40		北磁極測定 アラスカと霧ヶ峰の植生から環境変動を考える	134 135	2301	ポインセチアの花芽形成 メントスガイザーのCO2
41		アラスカと繋が峰の恒生から環境変動を考える 諏訪の植物とアラスカ州フェアバンクスの植物の糖度	136	2302	類別を表現する
42		諏訪とアラスカのシャボン玉の割れやすさの違い	137	2304	生薬の菌に対する抗生作用
43		ストレスによる体温・血圧・脈拍数の変化	138	2305	反応の本質を探る~反応速度と活性化エネルギーの算出~
44		諏訪(霧ヶ峰)とアラスカの植物の比較	139	2306	Excelを用いた交通渋滞シミュレーション
45		オーロラの動画撮影	140	2307	15パズルとあみだくじ
46		シャボン玉に含まれる糖の濃度による凍結までの時間の差	141	2308	フラックス法の時間設定とルビー結晶の大きさ
47 48	1821	北磁極の測定 地・雪・大気の温度変化	142 143	2309	高高度発光現象「スプライト」の観測 コイルガンの最大効率
48	1822 1823	水道水の比較	144	2310 2311	は、数学パズル
50		アラスカと日本の気圧	145	2312	モジホコリカビの迷路解読においての学習能力の有無
51		アラスカと諏訪の大気汚染物質濃度の比較	146	2313	御紙渡の作成
52	1826	オーロラのフィルター撮影について	147	2314	人工ダイヤモンドダスト
53		人工と天然のダイヤモンドダストの比較		2401	ミルククラウンの形成
54		重力加速度の測定	149		人エコランダムの生成
55 56		機内測定 気象測定 諏訪とアラスカの植物比較	150 151		守屋山のカキ化石 高高度発光現象「スプライト」
57		アラスカ・諏訪の植物の糖分比較	152	2404	合成洗剤の合成と測定
58		オーロラ動画・分光観察	153	2406	ミジンコに対する環境の影響
59	1904	オーロラ電波観測	154	2407	真正粘菌の生活
60		斜面を使った重力加速度測定	155	2408	粘菌の情報伝達
61		雪の成分考察	156	2409	大腸菌の増殖を防ぐシートの制作
62	1907	アラスカと日本の磁場の違い	157	2410	身の回りの細菌
63 64		シャポン玉に含まれる糖度による凍結までの時間の差 アラスカと諏訪の気温について	158 159	2411 2412	ビートルズ〜ヒットの秘密〜 円周率の求値と和算
65		環境の変化による血圧、脈拍の変化	160	2413	双子素数に関する考察
66		雪の結晶と成分分析	161	2501	イオンクラフト〜放電で風を起こす〜
67	1912	雪の成分分析による考察	162	2502	色素増感太陽電池~ネギの色素のHow to use~
68		アラスカと日本の気圧変化と違い	163	2503	スプライトの観測と正極性落雷の関連~自作受信機の製作と電波観測~
69		諏訪とアラスカの重力の違い 塩リスに トス重力加速度測定	164	2504	コケの分布とクマムシの生態
70 71		振り子による重力加速度測定 Distinction Of Aurora	165 166	2505 2506	諏訪湖の菱の有効活用 植物の成長と光
72	1917	アラスカの気候	167	2507	他物の放長と元
73	1918	日本とアラスカの紫外線量の比較	168	2508	フラックス法によるルビーの生成~六方両錐形結晶を目指して~
74	1919	耐寒性と糖度	169	2509	振動反応について~酸化還元反応のせめぎ合いの果てに~
75		アラスカと諏訪の気象比較	170	2510	偶然の確率~主観的確率(直観)による判断はどこまで適切か~
76		風とオーロラの関係	171	2601	色素増感電池〜効率の良い発電を目指して〜
77 78		北極点測定	172 173	2602 2603	マッチ棒問題の研究 スプライトの発生条件~電波観測による雷規模の推定~
79		目で見る重力加速度 オーロラの高さの測定	174	2604	スノフイトの発生条件~電波観測による雷規模の推定~ 大腸菌を防ぐ天然の抗菌シート作り
80	1925	オーロラの速度	175	2605	変形菌モジホコリの諸性質
81		レプリカ液による結晶の保存	176	2606	みその秘密にせまる
82	2002	太陽風とオーロラの関係	177	2607	フラックス法による人エルビー結晶の育成
83		周囲の温度変化に対する人体の対応	178	2608	セリウムを用いたBZ反応の第一振動と第二振動の関係性
84		雪の結晶から見る上空の大気状況	179	2609	圧力分散型堤防の可能性 密票金の分解を全球
85 86		太陽風とオーロラの関係をさぐる シャボン玉の凍結	180 181	2610 2701	楽器音の分解と合成 風洞を用いた飛行機に関する研究(物理)
87		日本とアラスカで見える星の違い	182	2701	一般 一般 一般 一般 一般 一般 一般 一般
88		北半球での緯度による重力加速度の違い	183	2703	ふたご座流星群 ~二点観測による軌跡解析~(地学)
89	2009	オーロラと地球磁場の関係	184	2704	マッチ棒の問題の追求(数学)
90		シャボン玉	185	2705	卵白の抗菌効果の研究~玉子酒は病気に効くのか~(生物)
91		時系列データの数値解析	186	2706	津波の軽減を目的とした新型防波堤の開発(物理)
92 93		太陽光の照度の観測 雪層	187 188	2707 2708	微生物燃料電池と有機物の関連性(化学) 落雷の電荷モーメントとスプライトの関連性(地学)
93		<u> </u>	189	2708	才セロ必勝法~先読みから分かる最善の一手~(数学)
95		オーロラの位置の計測	190	2710	海なし県長野での塩害を防ぐために
		※ 年度番号2015は、平成20年度15種類目を意味する。	191	2711	セリウムによるBZ振動反応の分離とその波形の解析(化学)