10-18

平面上に同じ点 O を中心とする半径 1 の円 C_1 と半径 2 の円 C_2 があり、C_1 の周上に定点 A がある。点 P, Q はそれぞれ C_1, C_2 の周上を反時計回りに動き、ともに時間 t の間に弧長 t だけ進む。時刻 t = 0 において、P は A の位置にあって O, P, Q はこの順に同一直線上に並んでいる。0 ≤ t ≤ 4π のとき △APQ の面積の 2 倍の最大値を求めよ。

△APQ の面積に関して、点 A(1, 0) として一般性を失わない。

\[
\begin{align*}
1 \times \angle AOP &= t \\
\therefore \angle AOP &= t \\
2 \times \angle AOO &= t \\
\therefore \angle AOO &= \frac{t}{2}
\end{align*}
\]

このとき、

\[
\overrightarrow{OP} = \left(\cos t, \sin t \right), \quad \overrightarrow{OQ} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right), \quad \overrightarrow{O}/(1, 0)
\]

であるから、

\[
\begin{align*}
\overrightarrow{AP} &= \overrightarrow{OP} - \overrightarrow{OA} = \left(\cos t - 1, \sin t \right) \\
\overrightarrow{AQ} &= \left(2 \cos \frac{t}{2} - 1, 2 \sin \frac{t}{2} \right)
\end{align*}
\]

\[
\begin{align*}
|\overrightarrow{AP}| &= (-1 + \cos t)^2 + \sin^2 t \\
&= \sin^2 t + \cos^2 t - 2 \cos t + 1 \\
&= -2 \cos t \\
|\overrightarrow{AQ}| &= 4 \cos^2 \frac{t}{2} + 4 \sin^2 \frac{t}{2} - 4 \cos \frac{t}{2} + 1 \\
&= -4 \cos \frac{t}{2} + 5
\end{align*}
\]

\[
\begin{align*}
\overrightarrow{AP} \cdot \overrightarrow{AQ} &= \left(2 \cos \frac{t}{2} - 1, 2 \sin \frac{t}{2} \right) \left(2 \cos \frac{t}{2} - 1, 2 \sin \frac{t}{2} \right) \\
&= 4 \cos^3 \frac{t}{2} - 2 \cos^2 \frac{t}{2} - 4 \cos \frac{t}{2} + 2
\end{align*}
\]

ここで、\(\cos \frac{t}{2} = x \) とおくと、\((-1 \leq x \leq 1)\)

\[
\begin{align*}
|\overrightarrow{AP}| &= 4 - 4x^2, \quad |\overrightarrow{AQ}| &= -4x + 5 \\
\overrightarrow{AP} \cdot \overrightarrow{AQ} &= -2x^2 + 2
\end{align*}
\]

△APQ の面積を S とすると、

\[
S^2 = \frac{1}{4} \left(|\overrightarrow{AP}|^2 |\overrightarrow{AQ}|^2 - (\overrightarrow{AP} \cdot \overrightarrow{AQ})^2 \right)
\]

\[
= \frac{1}{4} \left((-4 - 4x^2)(-4x + 5) - (-2x^2 + 2)^2 \right)
\]

\[
= \frac{1}{4} \left(16x^3 - 20x^2 - 16x + 20 - 4x^4 + 8x^2 - 4 \right)
\]

\[
= \frac{1}{4} \left(-4x^4 + 16x^3 - 12x^2 - 16x + 16 \right)
\]

\[
= -4x^4 + 4x^3 - 3x^2 - 4x + 4
\]

\[
\frac{dS^2}{dx} = -4x^3 + 12x^2 - 6x - 4
\]

\[
= -2(2x^2 - 6x + 3 + x + 2)
\]

\[
= -2(x - 2)(2x^2 - 2x - 1)
\]

\[
\frac{dS^2}{dx} = 0 \quad \text{とすると、}
\]

\[
(x - 2)(2x^2 - 2x - 1) = 0
\]

\[
\therefore \quad x = 2, \quad \frac{1}{2} \pm \frac{\sqrt{3}}{2}
\]

-1 ≤ x ≤ 1 の範囲で増減表をとると、

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>(\frac{1}{2} - \frac{\sqrt{3}}{2})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dS^2}{dx})</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>S^2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

よって、S^2 は、\(x = \frac{1}{2} - \frac{\sqrt{3}}{2} \) のとき最大となり、

\[
S^2 = -(\frac{1}{2} - \frac{\sqrt{3}}{2})^4 + 4(\frac{1}{2} - \frac{\sqrt{3}}{2})^3 - 3(\frac{1}{2} - \frac{\sqrt{3}}{2})^2
\]

\[
= -4(\frac{1}{4} - \frac{\sqrt{3}}{4}) + 4
\]

\[
= -4(\frac{1}{4} - \frac{\sqrt{3}}{4}) + 4
\]

\[
= -3(4 - 2\sqrt{3}) + \frac{4(1 - 3\sqrt{3})^3 + 3(1 - 3\sqrt{3})}{4}
\]

\[
= -\frac{3(4 - 2\sqrt{3})}{4} + \frac{-4 \cdot 1.73}{4} + 4
\]

\[
= \frac{2\sqrt{3} + 1}{4} + \frac{8 + 8\sqrt{3}}{4} = 6\sqrt{3} + 9
\]

解説 三角形の面積を求める方法として、△APQ = \(\frac{1}{2} \sqrt{|\overrightarrow{AP}|^2 |\overrightarrow{AQ}|^2 - (\overrightarrow{AP} \cdot \overrightarrow{AQ})^2} \) は、この形で使われることが多い。

\[
\overrightarrow{AP} = (\cos t - 1, \sin t), \quad \overrightarrow{AQ} = (2 \cos \frac{t}{2} - 1, 2 \sin \frac{t}{2})
\]

から、△APQ = \(\frac{1}{2} \left| (\cos t - 1) \cdot 2 \sin \frac{t}{2} - \sin t (2 \cos \frac{t}{2} - 1) \right| \) と求めるのでよい。最後のS^2の計算も直接的に解くことも参考に。